Background free measurement of β-delayed protons from ²⁷P for the astrophysical ^{26m}Al(p,γ)²⁷Si reaction

 A. Saastamoinen, I. Stefanescu,¹ S. Hallam,² G. Lotay,² E. Pollacco,² B. Reed,² B.T. Roeder, A. Spiridon,¹ L. Trache,¹ and R.E. Tribble
¹National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
²IRFU, CEA Saclay, Gif-sur-Yvette, France

The cosmic gamma-ray emitter ²⁶Al has been observed throughout the galactic plane of the Milky Way. Its short half-life of only about 720,000 years is an evidence about ongoing nucleosynthesis in our galaxy. The exact sites of creation and destruction of ²⁶Al are not pinpointed yet. The main candidates range from asymptotic giant branch stars to Wolf-Rayet stars to explosive scenarios such as oxygen-neon novae and core collapse supernovae. Nucleosynthesis in these hydrogen burning stellar scenarios occurs via network of radiative proton capture (p, γ) reactions. Among these reactions, proton capture from either the ground state, or the low-lying isomer state, of ²⁶Al to states in ²⁷Si can lead to depletion of ²⁶Al. Therefore, understanding of the properties of states beyond the proton separation threshold (S_p) in ²⁷Si is a crucial input for the modeling and understanding the origins of ²⁶Al in our galaxy. Several indirect and direct measurements have identified states relevant for both ^{26g,m}Al(p, γ)²⁷Si reactions. However some of the spin-parity assignments remain uncertain, especially in case of ²⁶Ml(p, γ)²⁷Si.

We have used selective nature of beta-decay of ²⁷P to populate states in ²⁷Si to improve the situation with the spin-parity assignments of the states just above the proton threshold in ²⁷Si. This decay was studied previously at the Cyclotron Institute by using the implantation-decay station utilizing Si and HPGe detectors [1,2]. As before, for this experiment the ²⁷P beam was produced through ¹H(²⁸Si,²⁷P)2n reaction with 40 MeV/u ²⁸Si beam from the K500 cyclotron impinging on LN₂ cooled H₂ target at 2 atm pressure. The reaction products were separated and identified with MARS resulting about 76% pure ²⁷P with average intensity of 1200 pps during the 7 day run. Immediately before and after the ²⁷P data taking run a beam of ²⁵Si was produced for calibration purposes through fragmentation with same primary beam hitting a 10 mil aluminum target.

β-delayed protons from ²⁷P were measured with the AstroBox2 detector [3,4] which suppresses the β-background down to ~100 keV and allows unambiguous measurement of low-energy β-delayed protons in the region of astrophysical interest. AstroBox2 was operated with ultra-pure P5 gas mixture (Ar/CH₄: 95%/5%) at 800 torr with drift field of about 200 V/cm and amplification field of about 30 kV/cm. While the ²⁵Si was spread throughout the active volume for calibration purposes, ²⁷P was tuned to over the centermost pads with the optimized background suppression capabilities. To ensure a pure sample impurity components of the beam with possible particle emitters (²⁴Al and ²⁵Si) were made to exit completely the main volume and only ²⁷P and ²⁶Si (only beta-gamma emission) impurity were stopped inside the active volume resulting 96% pure sample of ²⁷P over the centermost pads with most implants. During the beam time total of 1.5e8 27 P were implanted over the pads with best background rejection. Fig. 1. shows a preliminary sum spectrum of multiplicity one (only one pad triggering at the time) events from these pads. The main previously known β -delayed proton groups from decay of 27 P at 466(3), 612(2), and 731(2) keV [5] are clearly visible. In addition, several previously unobserved low energy particle groups are present. Detailed analysis of the data is work in progress.

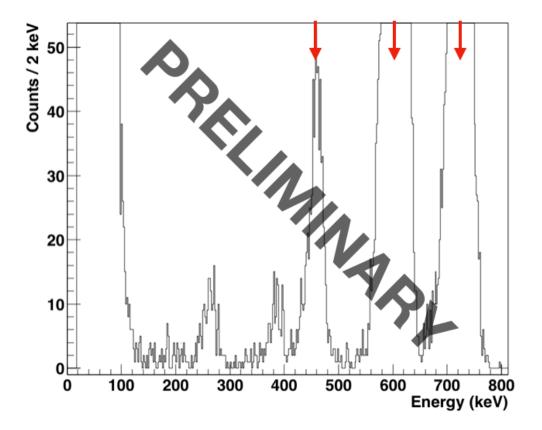


Fig. 1. Preliminary sum spectrum of the centermost pads with multiplicity one condition (only one pad firing at a time). The main previously known β -delayed proton groups from decay of ²⁷P at 466(3), 612(2), and 731(2) keV [5] are indicated with arrows. Several previously unobserved low-energy proton groups are present in the spectrum.

- [1] E. Simmons, PhD Thesis, Texas A&M University, 2013.
- [2] E. McCleskey et al., Phys. Rev. C 94. 065806 (2016).
- [3] A. Saastamoinen et al., Nucl. Instrum. Methods Phys. Res. B376, 357 (2016).
- [4] A. Saastamoinen et al., Nucl. Instrum. Methods Phys. Res. B463, 251 (2020).
- [5] T.J. Ognibene et al., Phys. Rev. C 54 1098 (1996).